Thema 25: Gleichungen und Ungleichungen mit Wurzelausdrücken
Thema 26: Geometrischer Ort (November 2023)

Mit Blick auf die 1. Runde der 63. Mathematik-Olympiade beziehen wir uns im November-Heft auf die Aufgaben MO631014 und MO631015. Angeregt durch die Einleitung zu Gleichungen mit Wurzelausdrücken erinnern wir an änliche Aufgabenstellungen. Zudem vertiefen wir die Diskussion um die Menge aller Punkte mit gewissen Eigenschaften.

Wir zitieren aus einem Rechenbuch von 1550, um die damalige Weise des Wurzelziehens kennenzulernen./sup>

Wir berichten vom 2. Präsenzseminar am 28.10.23 und stellen das Angebot "Girls Tandem" der TU Chemnitz vor.

Monatsaufgabe 11/23.
Gesucht ist derjenige geometrische Ort aller Punkte P einer Ebene, für den die Summe der Quadrate der Abstände zu zwei fest vorgegebenen Punkten A und B einen konstanten Wert |PA|2+|PB|2 = e2 = const annimmt.

(Einsendeschluss: 31.12.2023)

Thema 13.02: Bewegungsaufgaben (Oktober 2023)

Um nicht der laufenden 1. Runde der 63. Mathematik-Olympiade vorzugreifen, blicken wir im Oktober-Heft noch einmal auf das Thema "Bewegungsaufgaben" zurück und erweitern die Thematik mit "Querprodukten". Sowohl in Runde 1 als auch in Runde 4 der 62. MO wurden solche Aufgaben gestellt - dabei ist die Steigerung der Schwierigkeit zwischen den Klassenstufen und den Runden bei gleicher Grundidee nachvollziehbar.

Passend zu den Gleichungssystemen zur Lösung der Bewegungsqaufgaben blättern wir in einem Aufgabenbuch von 1906 und zitieren den Abschnitt über Gleichungssysteme mit zwei Unbekannten.

Wir berichten über die Mitteleuropäische Mathematik-Olympiade.

Monatsaufgabe 10/23.
Wir nennen eine positive ganze Zahl N infektiös, wenn es 1000 aufeinanderfolgende nichtnegative ganze Zahlen gibt, sodass die Summe aller ihrer Ziffern N ergibt.
Bestimme alle infektiösen positiven ganzen Zahlen.

(Einsendeschluss: 30.11.2023)

Thema 24: Kombinatorik (August/September 2023)

Um nicht der laufenden 1. Runde der 63. Mathematik-Olympiade vorzugreifen, blicken wir im Aug./Sep.-Heft noch einmal auf das Thema "Quersummen" zurück und erweitern die Thematik mit "Querprodukten". Wir zeigen, wie der Austausch dieser Begriffe in Wettbewerbsaufgaben einerseits zu aufwändigen Fallunterschiedungen führen kann, andererseits aber auch fast triviale Fragestellungen ergeben.

Mit Bezug auf die Aufgaben MO620942/MO621043 beginnen wir im Thema 24 die Diskussion zur Kombinatorik, wie sie in MO-Aufgaben häufig zu finden sind. Auch hier ist die Fallunterscheidung ein wichtiges Instrumentarium, um komplexe Situationen zu strukturieren.

Passend zu dieser Thematik blättern wir in einem Aufgabenbuch von 1895 und zitieren den Abschnitt ├╝ber Permutationen.

Wir berichten über die Internationale Mathematik-Olympiade, bei der das deutsche Team den 20. Platz erreichte.

Monatsaufgabe 09/23.
Von einer fünfstelligen ganzen Zahl wird eine bestimmte Ziffer gestrichen, so dass eine vierstellige Zahl übrig bleibt. Die fünfstellige und die neue vierstellige Zahl werden addiert und ergeben die Summe 52713.Wie groß ist die Quersumme der ursprünglichen fünfstelligen Zahl?

(Einsendeschluss: 31.10.2023)

Thema 23.01: Quersummen und Querprodukte (Juli 2023)

Mit Bezug zu den Aufgaben MO620941/MO621041 beginnen wir das Themas 23 im Juli-Heft mit Aufgaben, die sich als Einstieg in eine Wettbewerbrunde besonders eignen.

Wir blicken auf die Kernstücke der mathematischen Interessen- und Begabtenförderung: Korrespondenzzirkel Mathematik, Bundeswettbewerb Mathematik und Bundeswettbewerb "Jugend forscht".

Als Ferienlektüre zeigen wir unterhaltsame Approximationen der Zahl Pi.

Ebenso für die Ferienzeit eignet sich eine MO-Aufgabe in Reimen!

Thema 22: Zahlenverteilung auf Körpern (Juni 2023)

Noch einmal mit Bezug zur Aufgabe MO620936 stellen wir in der Fortsetzung des Themas 22 im Juni-Heft einige Aufgaben mit Zahlenverteilungen auf Seitenflächen oder Eckpunkten von Körpern in den Mittelpunkt.

Wir zeigen Anwendungsbeispiele des Wurzelsatzes von Vieta zur Lösung von nichtlinearen Gleichungssystemen. Passend dazu zitieren wir als historischen Beitrag die Vermittlung des Wurzelsatzes in einem Lehrbuch von 1895.

Wir blicken auf den Bundeswettbewerb "Jugend forscht" zurück und werben besonders zur Teilnahme im Fachgebiet Mathematik/Informatik - es lohnt sich auch im Wettbewerbsjahr 2024!

Monatsaufgabe 06/23.
Beweisen Sie: Zu jeder natürlichen Zahl n ≥ 2 gibt es von Null verschiedene natürliche Zahlen a1,a2,...,an, für die folgende Gleichung gilt:

a1 + a2 +...+ an = a1 · a2 · ... · an

(Einsendeschluss: 31.07.2023)

Thema 22: Zahlenverteilung auf ebenen Figuren (Mai 2023)

Mit Bezug zur Aufgabe MO620936 stellen wir im Mai-Heft Aufgaben vor, bei denen Zahlen auf ebenen Figuren verteilt werden, wobei auf definierten Geraden Eigenschaften erfüllt werden müssen. Meist geht es um Summen der auf den Geraden befindlichen Zahlen. Entgegen solcher Aufgaben aus der Unterhaltungsmathematik, bei denen eine Lösung gesucht wird, suchen MO-Aufgaben die Anzahl aller möglichen Lösungen.

Passend zur Thematik zitieren wir einen Beitrag von Adam Ries aus dem Jahr 1550 zu magischen Quadraten bis zur Ordnung 11.

Monatsaufgabe 05/23.
In die unten abgebildete Figur sind in die neun Kreise die Zahlen 1 bis 9 so einzutragen, dass jede dieser Zahlen genau einmal verwendet wird und die Summen der drei Dreiecksseiten (jeweils aus den Zahlen der vier Kreise einer Seite) gleich groß sind.
Ermitteln Sie alle möglichen verschiedenen Zahlenverteilungen, wenn im Kreis an der Spitze die Zahl 5 steht.
      O
    O O
  O     O
O O O O

Hinweis: Zwei Zahlenverteilungen heißen genau dann voneinander verschieden, wenn sich deren Eintragungen bei wenigstens einem Kreis unterscheiden.

(Einsendeschluss: 30.06.2023)

Thema 21: Mischungsverhältnisse (April 2023)

Mit Bezug zu den Aufgaben MO620934/MO621034 stellen wir im April-Heft Aufgaben vor, bei denen Mischungsverhältnisse zu berechnen sind. .

Wir setzen den Beitrag zu geometrischen Konstruktionen mit Zirkel und Lineal fort und erklären Beispiele, in denen Radien von In- und Umkreisen zu den bestimmungsstücken gehören. Ein Beitrag aus dem Jahr in "Elemente der Mathematik" diskutiert ein Aufgabenbeispiel, dass nicht allein mit Zirkel und Lineal konstruiert werden kann.

Monatsaufgabe 04/23.
Im Dreieck ABC wird A an B nach A1, B an C nach B1 und C an A nach C1 gespiegelt.
Man konstruiere das Dreieck ABC, falls nur die Punkte A1,B1,C1 gegeben sind. Die Konstruktion ist zu beschreiben und zu diskutieren.

(Einsendeschluss: 31.05.2023)

Thema 18.02: Satz des THALES (März 2023)

Mit Bezug zu der Aufgabe MO621024 stellen wir im März-Heft noch einmal Aufgaben vor, bei denen der Satz des THALES zur Anwendung kommen kann.

Anknüpfend an die aktuelle Serie des KZM der Kl. 9/10 diskutieren wir den FERMAT-Punkt im Dreieck und ergänzen die Thematik mit allgemeineren Aufgaben über Summen von Abständen zu den Dreiecks-Eckpunkten aus dem MO-Archiv.

Wir setzen den Beitrag zu geometrischen Konstruktionen mit Zirkel und Lineal fort und erklären Beispiele, in denen Vierecke zu konstruieren sind.

Monatsaufgabe 03/23.
Einem spitzwinkligen Dreieck ABC ist ein Dreieck DEF mit minimalem Umfang einzubeschreiben, wobei auf jeder Dreiecksseite des Dreiecks ABC eine Ecke des Dreiecks DEF liegt.

Thema 20: Rechnen mit großen Zahlen (Jan./Febr. 2023)

Mit Bezug zu der Aufgabe MO620923 stellen wir im Jan./Febr.-Heft Aufgaben vor, bei denen die Berechnungen großer Zahlen erforderlich waren.

Wir schließen den Beitrag über das Schubfachprinzip und zeigen Anwendungen bei geometrischen Fragestellungen. Dazu passend fanden wir eine Aufgabensammlung aus dem Jahr 1636, in der das Schubfachprinzip bereits angewandt wurde.

Monatsaufgabe 01/23.
Zeigen Sie: Ist α eine reelle Zahl und n eine natürliche Zahl, so existiert ein gekürzter Bruch p/q mit 0 < q ≤ n und Ι α - p/q Ι ≤ 1/(nq) .

Zu den nachfolgenden Themen sind auf Anfrage pdf-Dokumente erhältlich (siehe Mathematik aloha):

Thema 19: Maximale Flächeninhalte (Dezember 2022)
Thema 18: Satz des Thales (Oktober 2022)
Thema 17: Größter gemeinsamer Teiler (September 2022)
Thema 16: Gleichungen und Gleichungssysteme mit Betragszeichen (Juli 2022)
Thema 15: Stammbrüche (Mai 2022)
Thema 14: Wettbewerbsaufgaben mit Primzahlen (März 2022)
Thema 13.2: Bewegungsaufgaben (Oktober 2023)
Thema 13: Bewegungsaufgaben (Januar 2022)
Thema 12.1: Bedeckungen (April 2022)
Thema 12: Bedeckungen von ebenen Figuren (Dezember 2021)
Thema 11: Streckenberechnung (November 2021)
Thema 10: Beschränkte Brüche (November 2021)
Thema 09: Pythagoreische Zahlentripel (Oktober 2021)
Thema 08: Sekanten-Tangenten-(Winkel-)Satz (September 2021)
Thema 07: Kryptogramme (Juli/August 2021)
Thema 06.3: Einbeschriebene Kreise (Juni 2022)
Thema 06.2: Einbeschriebene Körper (Juni 2021)
Thema 06: Einbeschriebene Figuren (Juni 2021)
Thema 05: Quadratische Funktionen (Mai 2021)
Thema 04: Flächenberechnung (April 2021)
Thema 03: Gleichungssysteme (März 2021)
Thema 02: Ungleichungen mit vollständigen Quadraten (Februar 2021)
Thema 01: Funktionalgleichungen (Januar 2021)

Mathematische Kostproben